
Design and analysis of 
algorithms
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Prerequisites

• Should have basic knowledge of programming and

Discrete mathematics.

• Should know the Data Structures very well.

• Should have basic understanding of Formal Language

and Automata Theory
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• Design and Analysis of Algorithms mainly 
includes
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Course outcomes

After successful completion of the course, the
student will be able to:
❖Describe asymptotic notation and basic concepts of

algorithms

❖Apply Divide and Conquer paradigm to solve various
problems

❖Use Greedy technique to solve various problems

❖Apply Dynamic Programming technique to various
problems

❖Employ Backtracking technique to various problems

❖Apply Branch and Bound technique to various problems
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Text Book

Title: Fundamentals of Computer Algorithms. 

Authors: ELLIS HOROWITZ and SARTAJ SAHNI
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Definition

Algorithm is a finite set of instructions that if
followed, accomplishes a particular task.

All algorithms must satisfy the following criteria.

❖ Input: Zero or more quantities are externally
supplied.

❖ Output: At least one quantity is produced.

❖ Definiteness: Each instruction is clear and
unambiguous.

❖ Finiteness: If we trace out the instructions of an
algorithm then for all cases the algorithm
terminate after a finite number of steps.

❖ Effectiveness: Algorithm must not only definite
and also feasible. 6



The study of algorithms mainly includes

❖How to devise algorithms

❖How to validate algorithms

❖How to analyze algorithms

❖How to test a program
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BASIC TECHNIQUES FOR DESIGN OF EFFICIENT ALGORITHMS

There are basically 5 fundamental techniques which are used to design an

algorithm efficiently:

❖Divide-and-Conquer 

❖Greedy method 

❖Dynamic Programming 

❖Backtracking 

❖Branch-and-Bound 8
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Pseudo-Code Conventions for expressing algorithms: 

1. Comments begin with // and continue until the end 

of line.

2. Blocks are indicated with matching braces { and }.

3. An identifier begins with a letter. The data types of 

variables are not explicitly declared. 10



Pseudo-Code Conventions for expressing algorithms: 

4. Compound data types can be formed with records. Here is an example,

Node= Record

{

data type –1   data-1;

.

.

.

data type –n  data –n;

node * link;

}

Here link is a pointer to the record type node. Individual data items of a record can be accessed 
with →and period. 11



Pseudo-Code Conventions for expressing algorithms: 

5. Assignment of values to variables is done using the assignment

statement.

<Variable>:= <expression>;

6. There are two Boolean values TRUE and FALSE.
❖Logical Operators       AND, OR, NOT

❖Relational Operators   <, <=,>,>=, =, !=
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Pseudo-Code Conventions for expressing algorithms: 

7. The following looping statements are employed.

For, while and repeat-until

While Loop:

While < condition > do

{

<statement-1>

.

.

<statement-n>

}
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For Loop:

For variable: = value-1 to value-2 step step do
{

<statement-1>
.
.
.

<statement-n>
}
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Pseudo-Code Conventions for expressing algorithms: 



repeat-until:

repeat

<statement-1>

.

.

.

<statement-n>

until<condition>
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8. A conditional statement has the following forms.

If <condition> then <statement>

If <condition> then <statement-1> 

Else <statement-1>

Case statement:

Case

{

:<condition-1> :<statement-1>

.

.

.

:<condition-n> :<statement-n>

:else :<statement-n+1>

}
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9. Input and output are done using the instructions 
read & write.

10. There is only one type of procedure: Algorithm,   

the heading takes the form,

Algorithm Name (Parameter lists)
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Recursive algorithms

❖A Recursive function is a function that is defined in

terms of itself.

❖Similarly, an algorithm is said to be recursive if the

same algorithm is invoked in the body.

❖An algorithm that calls itself is Direct Recursive.

❖Algorithm ‘A’ is said to be Indirect Recursive if it calls

another algorithm which in turns calls ‘A’. 18
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Direct Recursion

INDIRECT RECURSION



Factorial of Number

20

Algorithm Factorial(int n)

{

if n = = 1 then

return 1

else

return factorial (n-1)*n

}



Performance Analysis

Space Complexity:

The space complexity of an algorithm is the

amount of memory it needs to run.

Time Complexity:

The time complexity of an algorithm is the amount

of computer time it needs to run. 21



❖Performance evaluation can be divided as:

• Priori Analysis

• Posteriori Analysis

Priori Analysis : It means we do analysis (space and time) of an

algorithm prior to running it on a specific system.(It is

independent of language of compiler and types of

hardware.)

Posteriori Analysis : it means we do analysis of algorithm only

after running it on a system. It directly depends on system

and changes from system to system.(It is dependent on

language of compiler and type of hardware.) 22



Space Complexity

❖The Space needed by each of these algorithms is

seen to be the sum of the following component.

❖A fixed part - This part typically includes the

instruction space (i.e., Space for the code), space

for simple variable, space for constants and so on.
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Space Complexity

❖A variable part that consists of the space needed

by component variables whose size is dependent

on the particular problem instance being solved,

and the recursion stack space.
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❖ The space requirement s(p) of any algorithm p may therefore be written as,

S(P) = c+ Sp(Instance characteristics)

Where ‘c’ is a constant.

❖When analyzing the space complexity of an algorithm, we concentrate solely on

estimating Sp (instance characteristics).

❖For any given problem, we need first to determine which instance characteristics

to use to measure the space requirements and this is very problem specific.25

Space Complexity



Example 1

Algorithm abc(a,b,c)

{

return a+b+b*c+(a+b-c)/(a+b) +4.0;

}

In this algorithm Sp=0;

let assume each variable occupies one word.

Then the space occupied by above algorithm is >=3.

S(P)>=3
26



Example 2

Algorithm Sum(a,n)

{

s:=0.0;

for i:=1 to n do

s:= s+a[i];

return s;

}

In the above algorithm n, s occupies one word each and array ‘a’  
occupies n number of words so S(P)>=n+3
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Time Complexity

❖Time Complexity of an algorithm represents the amount of time required by the

algorithm to run to completion.

❖The time T(P) taken by a program P is the sum of the compile time and the run

time(execution time).

❖The compile time does not depend on the instance characteristics( i.e. no. of

inputs, no. of outputs, magnitude of inputs, magnitude of outputs etc.) . Also we

may assume that a compiled program will be run several times without

recompilation .
28



❖We are concerned with just the runtime of a program, This runtime is

denoted by tp (instance characteristics).

❖We can determine the number of steps needed by a program to 

solve a particular problem instance in one of two ways.

1. Count method

2. s/e method (steps per execution)

29
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Count Method

❖In this method we introduce a variable, count into the program. This

is a global variable with initial value 0.

❖Statements to increment count by the appropriate amount are

introduced into the program. This is done so that each time a

statement in the original program is executed, count is incremented

by the step count of that statement.
30



Algorithm sum(a,n)

{

s= 0.0;

count: = count+1; // count is global; it is initially zero

for i:=1 to n do

{

count =count+1; // For for

s:=s+a[i];

count:=count+1; // For assignment

}

count:=count+1; // For last time of for

count:=count+1; // For return

return s;

} //Total of 2n+3 steps.
31



Example 2

Algorithm RSum(a,n)

{

count:=count+1; // For the if conditional

if(n<=0)then

{

count:=count+1;  //For the return

return 0.0;

}

else

{

count:=count+1; //For the addition, function invocation and return

return RSum(a,n-1)+a[n];

}

}
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❖When analyzing a recursive program for its step
count, we often obtain a recursive formula for
the step count as

33



34



s/e method

❖The second method to determine the step count of an algorithm is to
build a table in which we list the total number of steps contributes by
each statement.

❖First determine the number of steps per execution (s/e) of the
statement and the total number of times (ie., frequency) each
statement is executed.

❖By combining these two quantities, the total contribution of all
statements, the step count for the entire algorithm is obtained.
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Example 1
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Example 2

37



Example 3
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Asymptotic Notations

❖The asymptotic notations are used to find the time complexity of an
algorithm.

❖Asymptotic notations gives fastest possible, slowest possible and
average time of the algorithm.

❖The basic asymptotic notations are
❖Big-oh(O),

❖Omega(Ω) and

❖theta(Θ).

39



BIG-OH(O)NOTATION

❖Big-O, commonly written as O, It provides us with an asymptotic

upper bound for the growth rate of the runtime of an algorithm.

❖The function f(n)=O(g(n)) iff there exist positive constants c and n0

such that f(n) ≤ c*g(n) for all n, n≥ n0

40



BIG-OH(O)NOTATION

41



Examples

1. The function 3n+2=O(n) as 3n+2 ≤ 4n for all n ≥ 2.

2. The function 10n2+4n+2=O(n2) as 10n2+4n+2 ≤ 11n2 for all
n ≥ 5.

3. The function 100n3+100n2-6=O(n3) as 1000n3+100n2-6 ≤
101n2 for all n ≥ 100.
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OMEGA(Ω)NOTATION

❖Omega, commonly written as Ω, It provides us with an asymptotic

lower bound for the growth rate of the runtime of an algorithm.

❖The function f(n)= Ω(g(n)) iff there exist positive constants c and n0

such that f(n) ≥ c*g(n) for all n, n≥ n0

43



OMEGA(Ω)NOTATION
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Example

consider f(n)=3n+5, g(n)=n

Sol : Let us assume as c=2

f(n) >= C*g(n)

3n+5 >= 2n

for all n>=1,  f(n)=Ω(n)  i.e , f(n)=Ω(g(n)) 
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THETA(Θ)NOTATION

❖Theta, commonly written as Θ, is an Asymptotic Notation to denote

the asymptotically tight bound on the growth rate of runtime of an

algorithm.

❖The function f(n)= Θ(g(n)) iff there exist positive constants c1, c2 and

n0 such that c1 * g(n) ≤ f(n) ≤ c2 *g(n) for all n, n≥ n0
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THETA(Θ)NOTATION

47



Example

consider f(n)=3n+5, g(n)=n

Sol :c1*g(n)<=f(n)<=c2*g(n)

let us assuming as c1=2 and c2=4 then

2n <= 3n+5  <= 4n

for all :n>=3  f(n)=Θ(n)    f(n)=Θ (g(n))
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Performance Measurement

• Space Complexity

• Time Complexity

49
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DIVIDE AND CONQUER



• Divide and Conquer - A divide-and-conquer algorithm works by
recursively dividing a problem into two or more sub-problems until these
become simple enough to be solved directly. The solutions to the sub-
problems are then combined to give a solution to the original problem.
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Pros and cons of Divide and Conquer Approach

• Divide and conquer approach supports parallelism as sub-
problems are independent, can be solved simultaneously.

• In this approach, most of the algorithms follow recursions,
very high memory is required for recursion stack
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Application of Divide and Conquer Approach

• Finding the maximum and minimum of a
sequence of numbers

• Merge sort

• Binary search

• Quick Sort

• Matrix Multiplication (Strassen's algorithm)
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Algorithm DANDC (P)

{

// if problem P is small, find solution to p and return

if  SMALL (P) then return S(p);

else

{

divide P into smaller instances P1, P2,....Pk, k >=1; 

apply DANDC to each of these sub problems;

return combine (dandc (p1), dandc(p2),....dandc (pk));

}

}
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• If the sizes of the two sub problems are approximately 
equal then the computing time of DANDC is: 

Where, T (n) is the time for DANDC on ‘n’ inputs
g(n) is the time to complete the answer directly for small
inputs and f(n) is the time for Divide and Combine

56



FINDING THE MAXIMUM AND MINIMUM using
DIVIDE AND CONQUER Strategy

• Let P = (n, a [i],……,a [j]) denote an arbitrary instance
of the problem.

• Here ‘n’ is the no. of elements in the list (a [i],….,a[j])
and we are interested in finding the maximum and
minimum of the list.

• If the list has more than 2 elements, P has to be
divided into smaller instances.

• For example, we might divide ‘P’ into the 2 instances,
P1=([n/2],a[1],……..a[n/2]) & P2= ( n-[n/2],
a[[n/2]+1],….., a[n]) After having divided ‘P’ into 2
smaller sub problems, we can solve them by
recursively invoking the same divide-and-conquer
algorithm.
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• The procedure is initially invoked by the statement
MaxMin(1,n,x,y). for this algorithm each node has
four items of information: i, j, max, min. Suppose we
simulate MaxMin on the following nine elements:

a: [1] [2] [3] [4] [5] [6] [7] [8] [9]

22 13 -5 -8 15 60 17 31 47
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• As shown in figure, in this Algorithm, each node has 4 
items of information: i, j, max & min.

• In figure, root node contains 1 & 9 as the values of i& 
j corresponding to the initial call to MaxMin.

• This execution produces 2 new calls to MaxMin, 
where i& j have the values 1, 5 & 6, 9 respectively & 
thus split the set into 2 subsets of approximately the 
same size.

• Maximum depth of recursion is 4.
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Binary search

• Binary Search algorithm is used for finding an item from a 
sorted list,

• Binary Search works by repeatedly dividing input list into two 
halves, where in next step we can eliminate one half which 
cannot contain the required key to find. The process repeats 
until we are left with only one element

• If elements are not sorted, sort the array then apply Binary Search
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• Calculating Time complexity:
• Let say the iteration in Binary Search terminates 

after k iterations.
• At each iteration, the array is divided by half. So let’s say 

the length of array at any iteration is n
• At Iteration 1,Length of array = n
• At Iteration 2,Length of array = n⁄2
• At Iteration 3,Length of array = (n⁄

2
)⁄2 = n⁄2

2

• Therefore, after Iteration k, Length of array = n⁄2
k

• Also, we know that after k divisions, the length of array 
becomes 1

• Therefore Length of array = n⁄2
k = 1 => n = 2k

• Applying log function on both sides:=> log2 (n) = log2 (2k)
=> log2 (n) = k log2 (2)

• As (loga (a) = 1)
Therefore,=> k = log2 (n)

• Hence, the time complexity of Binary Search is
log2 (n) 65



Time complexity of binary search
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Merge sort

• A sorting algorithm which has the nice property that in the worst case 
its complexity is O(n log2 n). This algorithm is called merge sort.

• We shall assume throughout that the elements are to be sorted in 
non decreasing order. 

• Thus we have another ideal example of the divide-and-conquer 
strategy where the splitting is into two equal size sets and the 
combining operation is the merging of two sorted sets into one.

• Procedure MERGESORT describes this process very succinctly using 
recursion and a sub procedure MERGE which merges together two 
sorted Sets. 67



• Given a sequence of n. elements (also called keys) A(l), ... , A(n) the 
general idea is to imagine them split into two sets .

• Each set is individually sorted and the resulting sequences are merged 
to produce a single sorted sequence of n elements.

68



Merge sort algorithm
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Example and tree of calls to merge sort
Consider the array of ten elements A = (310, 285, 179, 652, 351, 423,861, 254, 450, 520).
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Tree of calls to merge
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Time complexity
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• When n is a power of 2, n = 2 k, we can solve this equation by successive 
substitutions, namely

• T(n) = 2(2T(n/4) + n/2) + n
= 4T(n/4) + n

= 4(2T(n/8) + n/4) + 2n
…
= 2kT(l) + kn
= n +n log n

• It is easy to see that if 2k < n < =2 k+ 1 then 
T(n) <= T (2 k+ 1).

• Therefore T(n) = O(n log2n).
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Quick sort

• In merge sort , the file A(l:n) was divided at its midpoint into sub files 
which were independently sorted and later merged. 

• In quick sort, the division into two sub files is made such that the 
sorted sub files do not need to be later merged. 

• This is accomplished by rearranging the elements in A(l :n) such that
A(i)<= A(j) for all i between 1 and m and all j between m + 1 and n for 
some m, 1<=m<=n.

• Thus, the elements in A(l:m) and A(m + l:n) may be independently 
sorted.
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Quick sort algorithm
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Partition algorithm
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Interchange algorithm
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Time complexity of quick sort

• The worst case complexity is O(n2)

• The average case and best case complexity is O(nlogn).
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UNIT-II

GREEDY METHOD
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GREEDY METHOD

➢All of these problems have n inputs and require us to obtain a subset
that satisfies some constraints.

➢Any subset that satisfies those constraints is called a feasible solution.

➢We need to find a feasible solution that either maximizes or minimizes a
given objective function.

➢A feasible solution that does this is called an optimal solution.

➢In Greedy method at each stage, a decision is made regarding whether a
particular input is in an optimal solution.



Control 
Abstraction of 
Greedy Method



Knapsack Problem

➢We are given n objects and a knapsack(bag)

➢Object i has a weight wi and the knapsack has a capacity m.

➢ If a fraction xi, 0<xi<1,of object i is placed into the knapsack,

then a profit of pi xi is earned.

➢ The objective is to obtain a filling of the knapsack that maximizes

the total profit earned. Since the knapsack capacity is m,

we require the total weight of all chosen objects to be at most m.



Knapsack Problem

• The problem can be stated as

A feasible solution(or filling) is any set(xi,..., xn) satisfying equation 2 and 3 above.

An optimal solution is a feasible solution for which equation 1 is maximized.

2

1
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Algorithm Greedy 
Knapsack



Job Sequencing with Deadlines 

➢Given a set of n jobs. Associated with job i is an integer deadline di >0 and a profit pi >0.

➢For any job i the profit pi is earned iff the job is completed by its deadline.

➢To complete a job, one has to process the job on a machine for one unit of time. Only one

machine is available for processing jobs.

➢A feasible solution for this problem is a subset J of jobs such that each job in this subset

can be completed by its deadline.

➢The value of a feasible solution J is the sum of the profits of the jobs in J, or σ𝑖∈𝐽 𝑝𝑖

➢An optimal solution is a feasible solution with maximum value.



Job Sequencing with Deadlines 

➢ The value of a feasible solution J is the sum of the profits of the jobs in J, or σ𝑖∈𝐽 𝑝𝑖

➢ An optimal solution is a feasible solution with maximum value. Here again, since the problem involves the

identification of a subset, it fits the subset paradigm.



Job Sequencing with Deadlines 

• The greedy algorithm described below always gives an optimal solution to the job sequencing problem-

• Step-01:

• Sort all the given jobs in decreasing order of their profit.

• Step-02:

➢ Check the value of maximum deadline.

➢ Draw a Gantt chart where maximum time on Gantt chart is the value of maximum    

deadline.

• Step-03:

➢ Pick up the jobs one by one.

➢ Put the job on Gantt chart as far as possible from 0 ensuring that the job gets completed 

before its deadline.

•
•



Job Sequencing with Deadlines Algorithm

Algorithm JobSequencing()

{
// jobs are arranged according to their profits from highest to lowest
// dmax – maximum job deadline
for i = 1 to n do

set k = min (dmax, deadline(i))
while k >= 1 do

if timeslot[k] is empty then
timeslot[k] = job[i]
break

end if
set k = k-1

end while
end for

}



Job 
Sequencing 
with Deadlines 

Solve the following instance of

Job Sequencing with deadlines

Jobs J1 J2 J3 J4 J5 J6

Deadlines 5 3 3 2 4 2

Profits 200 180 190 300 120 100



Job Sequencing 
with Deadlines 

Step-01:

Sort all the given jobs in decreasing 
order of their profit

Jobs J4 J1 J3 J2 J5 J6

Deadlines 2 5 3 3 4 2

Profits 300 200 190 180 120 100



Job Sequencing with Deadlines 

• Step-02:

• Value of maximum deadline = 5.

• So, draw a Gantt chart with maximum time on Gantt chart = 5 units

Now,

➢ We take each job one by one in the order they appear in Step-01.

➢ We place the job on Gantt chart as far as possible from 0.



Job Sequencing with Deadlines 

• Step-03:

➢We take job J4.

➢Since its deadline is 2, so we place it in the first empty cell before 
deadline 2



Job Sequencing with Deadlines 

• Step-04:

➢We take job J1.

➢Since its deadline is 5, so we place it in the first empty cell before 
deadline 5



Job Sequencing with Deadlines 

• Step-05:

➢We take job J3.

➢Since its deadline is 3, so we place it in the first empty cell before 
deadline 3



Job Sequencing with Deadlines 

• Step-06:

➢We take job J2.

➢Since its deadline is 3, so we place it in the first empty cell before 
deadline 3.

➢Since the second and third cells are already filled, so we place job J2 
in the first cell



Job Sequencing with Deadlines 

• Step-07:

➢We take job J5.

➢Since its deadline is 4, so we place it in the first empty cell before deadline 
4.

• Now,

➢The only job left is job J6 whose deadline is 2.

➢All the slots before deadline 2 are already occupied.

➢Thus, job J6 can not be completed.



Job Sequencing with Deadlines 

➢Write the optimal schedule that gives maximum profit.

• The optimal schedule is-

• J2 , J4 , J3 , J5 , J1

• This is the required order in which the jobs must be completed in order to obtain 
the maximum profit.

➢Are all the jobs completed in the optimal schedule?

All the jobs are not completed in optimal schedule. 

This is because job J6 could not be completed within its deadline.

➢What is the maximum earned profit?
Maximum earned profit

= Sum of profit of all the jobs in optimal schedule
= Profit of job J2 + Profit of job J4 + Profit of job J3 + Profit of job J5 + Profit of job J1
= 180 + 300 + 190 + 120 + 200
= 990 units



Minimum-cost Spanning Trees

➢ A spanning tree is a subset of an undirected Graph that has all the vertices connected by minimum

number of edges.

➢ For a graph, there may exist more than one spanning tree.

➢ Properties
• A spanning tree does not have any cycle.

• Any vertex can be reached from any other vertex.

➢ Let G = (V, E) be an undirected connected graph. A subgraph t = (V, E')of G is a spanning tree of G iff t is a

tree.

➢ If there are n number of vertices, the spanning tree should have n - 1 number of edges.

➢ A Minimum Spanning Tree (MST) is a subset of edges that connects all the vertices together with the

minimum possible total edge weight. To derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used.



Prim’s algorithm



Prim’s algorithm

➢ A greedy method to construct minimum-cost spanning tree, builds the tree

edge by edge. The next edge to include is chosen according to some

optimization criterion.

➢The simplest such criterion is to choose an edge that results in a minimum

increase in the sum of the costs of the edges so far included.

➢The next edge(u,v) to be included in A is a minimum-cost edge not in A

with the property that A U {(u,v)} is also a tree.



Prim’s algorithm
➢ working principle of Prim’s Algorithm



Algorithm AdjacencyMatrix()
{

for i=1 to n do
for j=1 to n do 

Read cost[i][j]
if(cost[i][j]==0) then 

cost[i][j]=999;
end if

end for
end for

}



// cost matrix is calculated using the above algorithm

Algorithm Prims() 

{

visited[1]=1

while(ne < n) do

min = 999

for i=1 to n

if(visited[i]!=0) then 

for j=1 to n do

if(cost[i][j]< min) then 

min=cost[i][j]

u=i

v=j

end if

end for

end if

end for

if(visited[v]==0) then

ne++

mincost+=min

visited[j]=1

end if

cost[u][v]=cost[v][u]=999

end while

}



Kruskal’s algorithm

➢ Sort all the edges in non-decreasing order of their weight.

➢ Pick the smallest edge. Check if it forms a cycle with the spanning

tree formed so far. If cycle is

not formed, include this edge. Else, discard it.

➢Repeat step#2 until there are (V-1) edges in the spanning tree.



Kruskal’s algorithm ➢ working principle of Kruskal’s Algorithm



Algorithm Kruskals()
{
while(ne < n) do

for i=1 to n
for j=1 to n

if(cost[i][j] < min) then
min=cost[i][j];
a=u=i;
b=v=j;

end if
end for

end for
u=find(u);
v=find(v);
if(uni(u,v)) then 

ne++
mincost = mincost+min;

end if
cost[a][b]=cost[b][a]=999;

end while
}



Algorithm find(int i)
{

while(parent[i]) do
i=parent[i];

return i;
}

Algorithm uni(int i,int j)
{

if(i!=j) then
parent[j]=i;
return 1;

return 0;
}



Differences between Prim’s and Kruskal’s

PRIM’S ALGORITHM KRUSKAL’S ALGORITHM

It starts to build the Minimum Spanning Tree from 
any vertex in the graph.

It starts to build the Minimum Spanning Tree from 
the vertex carrying minimum weight in the graph.

It traverses one node more than one time to get the 
minimum distance.

It traverses one node only once.

Prim’s algorithm gives connected component as well 
as it works only on connected graph.

Kruskal’s algorithm can generate forest(disconnected 
components) at any instant as well as it can work on 
disconnected components

Prim’s algorithm runs faster in dense graphs. Kruskal’s algorithm runs faster in sparse graphs.



Optimal Merge Patterns
➢Given n number of sorted files, the task is to find the minimum computations done to reach Optimal

Merge Pattern.

➢When two or more sorted files are to be merged all together to form a single file, the minimum

computations done to reach this file are known as Optimal Merge Pattern.

➢ If more than 2 files need to be merged then it can be done in pairs. For example, if need to merge 4

files A, B, C, D. First Merge A with B to get X1, merge X1 with C to get X2, merge X2 with D to get

X3 as the output file.

➢ If we have two files of sizes m and n, the total computation time will be m+n. Here, we

use greedy strategy by merging two smallest size files among all the files present.



• The two-way merge pattern scan be represented by binary merge 
trees.

• The leaf nodes are drawn as squares and represent the given files. 
These nodes are called external node.

2 Way Merge Pattern



Example

• if we have five files with sizes(20,30,10,5, 30),our greedy rule  would 
generate the following:



Example:

• Examples:
Given 3 files with size 2, 3, 4 units . Find optimal way to combine 
these files

• Input: n = 3, size = {2, 3, 4}
Output: 14
Explanation: There are different ways to combine these files:
Method 1: Optimal method



Example:

• Method 2:
Method 3:



Algorithm



Single Source Shortest Paths
➢Graphs can be used to represent the highway structure of a state or country with vertices representing cities 

and edges representing sections of highway. 

➢ The edges can then be assigned weights which may be either the distance between the two cities connected by 
the edge or the average time to drive along that section of highway. 

➢ The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to 
all other vertices in the graph.



Single Source Shortest Paths

• A motorist wishing to drive from city A to B would be interested in 
answers to the following questions:

➢ Is there a path from A to B? 

➢ If there is more than one path from A to B, which is the  shortest 
path?

The length of a path is now defined to be the sum of the weights of the 
edges on that path. 

The starting vertex of the path is referred to as the source, and the last 
vertex the destination.



Single Source Shortest Paths

➢ In the problem we consider, we are given a directed graph G = (V,E),a weighting function cost for the edges 
of G,and a source vertex v0. 

➢ The problem is to determine the shortest paths from v0to all the remaining vertices of G.

➢ It is assumed that all the weights are positive. 

➢ The shortest path between v0 and some other node v is an ordering among a subset of the edges. 

➢Hence this problem fits the ordering paradigm. 



Example



Algorithm(Dijkstra’s algorithm)



Difference between Bellman-ford and Dijkstra 
Algorithms
➢ The only difference between the two is that Bellman-Ford is also capable of handling negative weights .

➢ Dijkstra Algorithm can only handle positives.



UNIT III

Dynamic Programming



• Dynamic Programming is mainly an optimization over plain recursion. 

• Wherever we see a recursive solution that has repeated calls for same inputs, we can 
optimize it using Dynamic Programming.

• The idea is to simply store the results of subproblems, so that we do not have to re-
compute them when needed later.

• Dynamic programming is both a mathematical optimization method and a 
computer programming method. 



• Like divide-and-conquer method, Dynamic Programming solves problems by 
combining the solutions of subproblems. ...

• Moreover, Dynamic Programming algorithm solves each sub-problem just once 
and then saves its answer in a table, thereby avoiding the work of re-computing 
the answer every time.

• Dynamic programming is an algorithm design method that can be used when the 
solution to a problem can be viewed as the result of a sequence of decisions.



Applications 
of Dynamic 
Programming

• All Pairs Shortest Paths

• Single Source Shortest Paths General Weights

• Optimal Binary Search Tree

• String Edition

• 0/1 Knapsack Problem

• Reliability Design



All Pairs 
Shortest 
Paths

• The all pair shortest path algorithm is also known as Floyd-
Warshall algorithm is used to find all pair shortest 
path problem from a given weighted graph. 

• As a result of this algorithm, it will generate a matrix, which will 
represent the minimum distance from any node to all other 
nodes in the graph.



• Let G = (V, E) be a directed graph with n vertices.

• The all-pairs shortest-path problem is to determine a matrix A such 
that A(i,j)is the length of a shortest path from i toj.

• A(i,j)={ 0 if i=j
the weight of the directed edge ⟨i,j⟩ if i≠j and

⟨i,j⟩∈E ∞ if i≠j and ⟨i,j⟩∉E

A(i,j)= min { min {A^k(i,k) +A^k-1(k,j)},cost(i, j)}

i<k<n



Algorithm for All pairs shortest paths



Example



Example:



Single Source Shortest Paths General Weights

• The idea is to use Bellman–Ford algorithm to compute the 
shortest paths from a single source vertex to all of the other 
vertices in given weighted digraph.

• Bellman–Ford algorithm is slower than Dijkstra's Algorithm but 
it is capable of handling negative weights edges in 
the graph unlike Dijkstra's.



Single Source Shortest 
Paths(General Weights)

• When negative edge lengths are 
permitted ,we require that the graph 
have no cycles of negative length. 
This is necessary to ensure that 
shortest paths consist of a finite 
number of edge.



Example



Algorithm for Single source shortest path using Bellman 
Ford algorithm


